
Exercise 2: Deep Learning

Ehsan Mousavi, Kasra Alishahi

December 16, 2023

Problem 1: Computational Graph

Let f(x1, x2, x3, w1, w2, w4) be a model represented as the following computation
graph.

x1

w1

x2

w2

x3

w3

w4

×

×

max

+

+

tanh

max

+ σ(·) out

z1

z2

z3

z4

z5

z6

z7

z8 z9

Here. σ(x) = 1
1+e−x is the Sigmoid function.

i.) For each node, write the output as an expression of inputs. For example,
z5 = w4 + z3.

ii.) Given the inputs x1 = 1, x2 = 3, x3 = 2, w1 = 2, w2 = 1, w3 = 5, w4 = 2,
use the forward pass algorithm to compute function output f .

1

iii.) Use backward-pass to compute ∂f
∂xi

, ∂f
∂wi

and ∂f
∂zi

for i = 1, 2, 3 at the given
point x1 = 1, x2 = 3, x3 = 2, w1 = 2, w2 = 1, w3 = 5, w4 = 2.

Problem 2: Backpropation

In this exercise, we implement the gradient descent and backpropagation algo-
rithms for a multi-layer DNN. Consider a neural network architecture with L
hidden layers, where all hidden layers have d nodes. The input layer has din = 5
nodes, and the output layer has K = 3 nodes. The final layer utilizes the soft-
max activation, and the loss function is cross-entropy. The activation function
applied to all layers is ELU with α = 1.

i.) Implement the feedforward algorithm. Report the output of the network
for L = 5, d = 10, xi = i for i = 1, . . . , 5. Initialized the weights by
following function:

def initialize_weights(layer_dimensions):

np.random.seed(42) # For reproducibility

parameters = {}

L = len(layer_dimensions) - 1 # Number of layers excluding input layer

for l in range(1, L + 1):

He initialization for weights

parameters[f"W{l}"] = np.random.randn(

layer_dimensions[l], layer_dimensions[l - 1]

) * np.sqrt(2 / layer_dimensions[l - 1])

Initializing biases to zeros

parameters[f"b{l}"] = np.zeros((layer_dimensions[l], 1))

return parameters

Here’s the corrected version of the text:

ii.) Implement the Backpropagation algorithm. Set the number of layers to
L = 30. Compute the norm of the derivative for layer l, denoted as
δl = |∇Wl

ℓ(f(x), y)|, where y = (1, 0, 0). Plot δl versus l and provide
an explanation for your observations.

iii.) Implement SGD, SGD with momentum, and Nesterov momentum. Set
the number of layers to L = 5. For the provided dataset, plot ∥Wt∥2,
representing the norm of the updated weights in iteration t. Additionally,
plot the evolution of loss and accuracy on the train and test sets using Wt

as the updated weights in iteration t. Use an appropriate learning rate and
set ρ = 0.9 for momentum.

For the last part of the exercise, use : “diabetes health indicators dataset”

2

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset/data.

Problem 3: Stochastic Gradient Descent

The goal of this exercise is to analyze the rate of convergence of stochastic gra-
dient descent. Let f(w) = E[g(X,w)], a differentiable function. The stochastic
gradient descent sequence is defined by

wk+1 = wk − αk∇wg(Xk, w)

where αk is the learning rate, and X1, X2, . . . is a sequence of i.i.d variables.
Consider the following assumptions:

Assumption 1 Let f be a differentiable function for which ∇f is L-Lipschitz.
Equivalently

f(w̃) ≤ f(w) +∇f(w)T (w̃ − w) +
L

2
||w̃ − w||22 for all w̃, w ∈ Rd

Assumption 2 There exists a constant σ2 such that

E[∥∇wg(w,X)∥2] ≤ σ2

for all w ∈ Rd

i.) Assume that (1) holds, show that

E[f(wk+1)] ≤ f(wk)− αk∥∇f(wk)∥2 +
α2
kL

2
E[∥∇wg∥2]

ii.) Assume that (1, 2) holds then prove that

t−1∑
k=0

αkE[∥∇f(wk)∥2] ≤ f(w0)− E[f(wt)] +
σ2L

2

t−1∑
k=0

α2
k

iii.) Assume that (1, 2) holds and f(w) is bounded below. Let f∗ = minw f(w),
show that

min
0≤k≤t

E[∥∇f(wk)∥2] ≤
f(w0)− f∗∑t−1

k=0 αk

+
σ2L

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk

iv.) What is R.H.S if the learning rate αk = α is constant? What if αk = 1
k3/4 ?

How about if αk = 1
k1/2 ?

Problem 4: Dropout

In this exercise, we will examine the additive regularization effects of dropout.
For simplicity, we will only consider node dropout is applied to only layer i of the
network. Let hi denote the i-th hidden layer of the network, and let Fi denote

3

the composition of the layers after hi. That is, Fi represents the function that
takes hi as input and outputs the model prediction. Thus, the full network is
expressed as F (x) = Fi(hi(x)).Let’s η⃗ ∈ Rd be random vector with independent
coordinates.

ηk =

{
−1 with prob q
q

1−q with prob 1− q

i.) Show that E[η⃗] = 0 and argue that we can apply dropout by computing

hdrop
i = (1 + η⃗)⊙ hi(x). Here, v1 ⊙ v2 refers to the entry-wise product for

vectors v1, v2. Hint: The correct answer is not longer than two lines.!!!!

ii.) For small enough q, show that

Eη[ℓ(F (x, η), y)]− ℓ(F (x), y) ≈ q

2(1− q)

〈
D2

hi
(ℓ ◦ Fi)[hi], diag(hi(x)⊙ hi(x))

〉
.

(1)

Here,
〈
A,B

〉
= tr(ATB) is the inner product of matrices A,B ∈ Rd×d.

Also, D2
u(g)[b] represents second derivative of g with respect to u evaluated

at point u = b. Finally, H = diag([r1, . . . , rm]) is a diagonal matrix such
that H[i, i] = ri and H[i, j[= 0 if i ̸= j.

Note: It can be argue that this approximation holds even for non-small q

iii.) For linear case F (x) = Wx and square error loss ℓ(ŷ, y) = (ŷ−y)2, compute
the right hand side of (1). Interprets your observation.

Problem 5: Effect of Transfer learning

In this exercise, we are interested to build model to detect faces with and without
masks by taking advantage of Transfer Learning. Transfer learning is a machine
learning technique where a model trained on one task is reused or adapted as a
starting point for a related task. In this task, we compare the performance of a
simple CNN model and transfer learning model.

i.) Follow the instruction in colab, to download face-mask-detection dataset
in colab. Use the provided code to explore data set, resize the image and
creating training and validation Sets.

ii.) Build a CNN model. The model includes 4 convolution layers with Relu
function follows by two dense layers. Train the model and plot the evolu-
tion of loss and accuracy over train and validation set.

iii.) Add Batch normalization to each convolution layers and dropout to the
first dense layer. Train the model (by correct initialization) and plot the
evolution of loss and accuracy over train and validation set.

4

https://colab.research.google.com/drive/1-PzZXMAVF5o6CJH0rlo3fY8vA0TWzGeI?usp=sharing

iv.) Utilize the pre-trained ResNet34 model both with and without pre-trained
weights on the ImageNet dataset. Add a linear layer to the output of the
ResNet34. Proceed to train the model in both scenarios (with and without
pre-trained weights) and compare the accuracy and loss values between the
training and validation sets with the previous case.

5

